Abstract

Robotic assistance enables a surgeon to perform dexterous and precise manipulations. However, conducting robot assisted neurosurgery within the deep and narrow spaces of the brain presents the risk of unexpected collisions between the shafts of robotic instruments and their surroundings out of the microscopic view. Thus, we propose the provision of feedback using a truncated cone shaped virtual fixture generated by marking the edges of the top and bottom plane of a workspace in the deep and narrow spaces within the brain with the slave manipulator. The experimental results show that the virtual fixture generation method could precisely model the workspace. We also implemented force feedback, visual feedback, and motion scaling feedback in the microsurgical robotic system in order to inform the surgeon of the risk of collision. Performance of each feedback method and their combinations was evaluated in two experiments. The experimental results showed that the combination of the force and the visual feedback methods were the most beneficial for avoiding collisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.