Abstract

AbstractDirectional, anisotropic features like layers in the solution of partial differential equations can be resolved favorably by using anisotropic finite element meshes. An adaptive algorithm for such meshes includes the ingredients Error estimation and Information extraction/Mesh refinement. Related articles on a posteriori error estimation on anisotropic meshes revealed that reliable error estimation requires an anisotropic mesh that is aligned with the anisotropic solution. To obtain anisotropic meshes the so‐called Hessian strategy is used, which provides information such as the stretching direction and stretching ratio of the anisotropic elements. This article combines the analysis of anisotropic information extraction/mesh refinement and error estimation (for several estimators). It shows that the Hessian strategy leads to well‐aligned anisotropic meshes and, consequently, reliable error estimation. The underlying heuristic assumptions are given in a stringent yet general form. Numerical examples strengthen the exposition. Hence the analysis provides further insight into a particular aspect of anisotropic error estimation. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 625–648, 2002; DOI 10.1002/num.10023

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call