Abstract
This study investigates the dynamic properties of air-liquid interfacial tension for hydrophilic TiO2 P25 utilizing the pendant drop method. Additionally, it examines the interfacial adsorption mechanism of hydrophilic TiO2 particles, considering the characteristics of particle surface charge distribution in relation to ion regulation to enhance particle interface adsorption. Experimental results reveal that in the absence of ion addition, the TiO2 P25 suspension system exhibits limited interfacial adsorption due to its superhydrophilicity, regardless of particle concentration. The addition of NaCl increases the surface charge density of the particles, strengthens the electrostatic attraction between particles and the interface, and enhances particle adsorption. Specifically, at a low NaCl concentration (0.01 wt %), the increased surface charge density and contact angle of the particles elevate particle activity and high interfacial packing density. At a higher NaCl concentration (0.1 wt %), while NaCl further increases the particle contact angle, the increased effective cross-sectional area of the air-liquid interface occupied by individual particles leads to a reduction in surface free energy. Despite the enhanced electrostatic attraction, this results in a lower packing density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.