Abstract
Coronal mass ejections (CMEs) are associated with the eruption of magnetic flux ropes (MFRs), which usually appear as hot channels in active regions and coronal cavities in quiet-Sun regions. CMEs often exhibit a classical three-part structure in the lower corona when imaged with white-light coronagraphs, including a bright front, dark cavity, and bright core. For several decades, the bright core and dark cavity have been regarded as the erupted prominence and MFR, respectively. However, recent studies have clearly demonstrated that both the prominence and hot-channel MFR can be observed as the CME core. The current research presents a three-part CME resulting from the eruption of a coronal prominence cavity on 2010 October 7, with observations from two vantage perspectives, i.e., edge-on from the Earth and face-on from the Solar Terrestrial Relations Observatory (STEREO). Our observations illustrate two important results: (1) for the first time, the erupting coronal cavity is recorded as a channel-like structure in the extreme-ultraviolet passband, analogous to the hot-channel morphology, and is dubbed as the warm channel; and (2) both the prominence and warm-channel MFR (coronal cavity) in the extreme-ultraviolet passbands evolve into the CME core in the white-light coronagraphs of STEREO-A. The results suggest that we are working toward a unified explanation for the three-part structure of CMEs, in which both prominences and MFRs (hot or warm channels) are responsible for the bright core.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have