Abstract

We initiate a systematic investigation of the abstract elementary classes that have amalgamation, satisfy tameness (a locality property for orbital types), and are stable (in terms of the number of orbital types) in some cardinal. Assuming the singular cardinal hypothesis (SCH), we prove a full characterization of the (high-enough) stability cardinals, and connect the stability spectrum with the behavior of saturated models.We deduce (in ZFC) that if a class is stable on a tail of cardinals, then it has no long splitting chains (the converse is known). This indicates that there is a clear notion of superstability in this framework.We also present an application to homogeneous model theory: for [Formula: see text] a homogeneous diagram in a first-order theory [Formula: see text], if [Formula: see text] is both stable in [Formula: see text] and categorical in [Formula: see text] then [Formula: see text] is stable in all [Formula: see text].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.