Abstract
This paper is part of a program initiated by Saharon Shelah to extend the model theory of first order logic to the non-elementary setting of abstract elementary classes (AECs). An abstract elementary class is a semantic generalization of the class of models of a complete first order theory with the elementary substructure relation. We examine the symmetry property of splitting (previously isolated by the first author) in AECs with amalgamation that satisfy a local definition of superstability. The key results are a downward transfer of symmetry and a deduction of symmetry from failure of the order property. These results are then used to prove several structural properties in categorical AECs, improving classical results of Shelah who focused on the special case of categoricity in a successor cardinal. We also study the interaction of symmetry with tameness, a locality property for Galois (orbital) types. We show that superstability and tameness together imply symmetry. This sharpens previous work of Boney and the second author.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.