Abstract

Matrix metalloproteinases (MMPs), a class of zinc-enzymes over-activated in many pathologies, such as arthritis and cancer, can be efficiently inhibited by a variety of molecules bearing zinc-binding groups (ZBGs). The hydroxamic acid moiety represents one of the most potent and widely exploited ZBG but the poor target selectivity and in vivo toxicity have tempered the initial enthusiasm for this class of potential therapeutics. These drawbacks might be circumvented, at least in part, by increasing the structural constraints around the hydroxamic moiety. Following this strategy we designed and prepared N-hydroxylactam molecules of different size through a synthetic protocol based on a ring closing metathesis amenable to a fragment-based approach potentially leading to a large molecular diversity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.