Abstract

We study the relation between nuclear massive black holes and their host spheroid gravitational potential. Using AMR numerical simulations, we analyze how gas is transported in the nuclear (central kpc) regions of galaxies. We study the gas fueling onto the inner accretion disk (sub-pc scale) and the star formation in a massive nuclear disk like those generally found in proto-spheroids (ULIRGs, SCUBA Galaxies). These sub-pc resolution simulation of gas fueling that is mainly depleted by star formation naturally satisfy the 'M{sub BH} - M{sub virial}' relation, with a scatter considerably less than the observed one. We found a generalized version of Kennicutt-Schmidt Law for starbursts is satisfied, in which the total gas depletion rate ({dot M}{sub gas} = {dot M}{sub BH} + {dot M}{sub SF}) is the one that scales as M{sub gas}/t{sub orbital}. We also found that the 'M{sub BH} - {sigma}' relation is a byproduct of the 'M{sub BH} - M{sub virial}' relation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call