Abstract

Fracture processes in cement-based materials are characterized by a large-scale fracture process zone, localization of deformation, and strain softening. Many studies have been conducted to understand the toughening mechanisms of such quasi-brittle materials and to theoretically model their nonlinear response. This paper summarizes two innovative experimental techniques which are being developed at the ACBM Center to better define the fracture process zone in cement-based materials. A brief summary is also given of two types of theoretical approaches which attempt to simulate some of the observed nonlinear fracture response of these materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call