Abstract
As an emerging ceramic material, recently synthesized nanotwinned diamond composites with various polytypes embedded in nanoscale twins exhibit unprecedented fracture toughness without sacrificing hardness. However, the toughening and crack healing mechanisms at the atomic scale and the associated crack propagation process of nanotwinned diamond composites remain mysterious. Here, we perform large-scale atomistic simulations of crack propagation in nanotwinned diamond composites to explore the underlying toughening and crack healing mechanisms in nanotwinned diamond composites. Our simulation results show that nanotwinned diamond composites have a higher fracture energy than single-crystalline and nanotwinned diamonds, which originates from multiple toughening mechanisms, including twin boundary and phase boundary impeding crack propagation, crack deflection and zigzag paths in nanotwins and sinuous paths in polytypes, and the formation of disordered atom clusters. More remarkably, our simulations reproduce more detailed crack propagation processes at the atomic scale, which is inaccessible by experiments. Moreover, our simulations reveal that crack healing occurs due to the rebonding of atoms on fracture surfaces during unloading and that the extent of crack healing is associated with whether the crack surfaces are clean. Our current study provides mechanistic insights into a fundamental understanding of toughening and crack healing mechanisms in nanotwinned diamond composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.