Abstract

Total synthesis of human insulin, a two:chain peptide containing three disulfide bonds, was achieved unambiguously by sequential and selective formation of disulfide bonds in the protein for the first time. The key reaction in the synthesis is separate regioselective formation of three disulfide bonds using a silyl chloride method developed by us. Prior to the insulin synthesis, it was confirmed by the syntheses of double-disulfide peptides, conotoxin M1, β-hANP, and an unnatural parallel dimer of α-hANP, that no disulfide exchange occurred during the silyl chloride treatment. Using three orthogonal thiol-protecting groups, Trt, Acm, and t-Bu, the three disulfide bonds of human insulin were efficiently constructed by successive reactions using thiolysis, iodine oxidation, and the silyl chloride method

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.