Abstract

Glutamate dehydrogenase regulates crop development, growth, and biomass yield through its synthesis of non-genetic code-based RNA. Understanding the mechanism of GDH-synthesized RNA enzyme would enhance the agriculture innovation capacity of the more than a billion urban gardeners, smallholder, and limited resources indigenous farmers. Different metabolic variants were prepared by treating peanut growing on healthy soil with stoichiometric mixes of mineral salt solutions. Peanut GDH charge isomers were purified to homogeneity by electrophoresis, and made to synthesize RNA enzyme. Peanut total RNA was 5’-end labeled with [γ-32P]ATP and made to react as substrate in vitro with GDH-synthesized RNA from another metabolic variant of peanut. Agarose, and polyacrylamide gel electrophoresis of the reaction products showed that tRNA, rRNA, and most of the mRNAs were degraded to mononucleotides, but total RNAs that were not mixed with GDH-synthesized RNAs were not degraded. When the non-homologous sequence sections of the GDH-synthesized RNA were clipped out, the homologous sections failed to produce Northern bands with peanut total RNA. Therefore, the non-homologous sequence sections served to identify, position, and align the GDH-synthesized RNA to its target total RNA site independent of genetic code; the degradation of total RNA being via non-canonical base alignments in the enzyme-substrate complex, followed by electromagnetic destruction of the total RNA, the less stable of the two kinds of RNA. This is the science-based corner stone that buttresses the crop production efforts of limited resources farmers because GDH-synthesized RNAs quickly degrade superfluous total RNA of the crop in response to the soil mineral nutrient deficiencies thereby minimizing wastage of metabolic energy in the synthesis of unnecessary protein enzymes while optimizing biomass metabolism, crop growth, and maximum crop yields. In vitro hydrolysis of total RNA by GDH-synthesized RNA is the game changing, prototype, R&D methods for cleansing sick total RNA from cells, tissues, and whole organisms.

Highlights

  • Crop glutamate dehydrogenase (GDH, EC 1.4.1.2) synthesizes RNA independent of template as it isomerizes in response to nucleophiles and electrophiles including intermediary metabolites, xenobiotics, pesticides, mineral nutrients, N-(Carboxymethyl) chitosan, methionine sulphoximine, auxins, toxic metal ions, and nucleotides [1] [2] [3] [4]

  • Polyacrylamide gel electrophoresis of the reaction products showed that tRNA, rRNA, and most of the mRNAs were degraded to mononucleotides, but total RNAs that were not mixed with GDH-synthesized RNAs were not degraded

  • The RNA enzymes synthesized by all the GDH charge isomers (a) very acid; (b) acid; (c) mildly acid; (d) neutral; (e) mildly alkaline; (f) alkaline; (g) very alkaline of the P + K-treated peanut hydrolyzed all the low molecular weight constituents of the total RNA of KCl-treated peanut to virtually mononucleotides compared with the total RNA samples that were not treated with the GDH-synthesized RNAs (Figure 1(A))

Read more

Summary

Introduction

Crop glutamate dehydrogenase (GDH, EC 1.4.1.2) synthesizes RNA independent of template as it isomerizes in response to nucleophiles and electrophiles including intermediary metabolites, xenobiotics, pesticides, mineral nutrients, N-(Carboxymethyl) chitosan, methionine sulphoximine, auxins, toxic metal ions, and nucleotides [1] [2] [3] [4]. Comparison between the nucleotide sequences of numerous RNAs synthesized by GDH and crop yields on the one hand, and with their responses to stoichiometric mixes of mineral salt treatments on the other hand revealed the ribonuclease activities of the RNAs [5] [6]. The enzymic property of GDH-synthesized RNA (non-genetic code-based RNA) is due in parts to the fact that it is more thermostable than total RNA [7]. We begin to present the machinery and mechanisms of total RNA degradation by GDH-synthesized RNA, and of the possible R&D applications

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.