Abstract

BackgroundMicroRNA has become important in a wide range of research interests. Due to the increasing number of known microRNAs, these molecules are likely to be increasingly seen as a new class of biomarkers. This is driven by the fact that microRNAs are relatively stable when circulating in the plasma. Despite extensive analysis of mechanisms involved in microRNA processing, relatively little is known about the in vitro decay of microRNAs under defined conditions or about the relative stabilities of mRNAs and microRNAs.MethodsIn this in vitro study, equal amounts of total RNA of identical RNA pools were treated with different ribonucleases under defined conditions. Degradation of total RNA was assessed using microfluidic analysis mainly based on ribosomal RNA. To evaluate the influence of the specific RNases on the different classes of RNA (ribosomal RNA, mRNA, miRNA) ribosomal RNA as well as a pattern of specific mRNAs and miRNAs was quantified using RT-qPCR assays. By comparison to the untreated control sample the ribonuclease-specific degradation grade depending on the RNA class was determined.ResultsIn the present in vitro study we have investigated the stabilities of mRNA and microRNA with respect to the influence of ribonucleases used in laboratory practice. Total RNA was treated with specific ribonucleases and the decay of different kinds of RNA was analysed by RT-qPCR and miniaturized gel electrophoresis. In addition, we have examined whether the integrity observed for ribosomal RNA is applicable to microRNA and mRNA. Depending on the kind of ribonuclease used, our results demonstrated a higher stability of microRNA relative to mRNA and a limitation of the relevance of ribosomal RNA integrity to the integrity of other RNA groups.ConclusionOur results suggest that the degradation status of ribosomal RNA is not always applicable to mRNA and microRNA. In fact, the stabilities of these RNA classes to exposure to ribonucleases are independent from each other, with microRNA being more stable than mRNA. The relative stability of microRNAs supports their potential and further development as biomarkers in a range of applications.

Highlights

  • MicroRNA has become important in a wide range of research interests

  • The integrity of ribosomal RNA is affected by treatment with specific ribonucleases In contrast to mRNA, which represents only 0.5 to 3% of the transcriptome, ribosomal RNA is the most prevalent constituent of total RNA in mammalian cells [15]

  • For this reason the quality of mRNA is generally extrapolated on the basis of the quality of ribosomal RNA, which can be analysed, for example, with microfluidic analysis (Agilent 2100 Bioanalyzer)

Read more

Summary

Introduction

Due to the increasing number of known microRNAs, these molecules are likely to be increasingly seen as a new class of biomarkers. This is driven by the fact that microRNAs are relatively stable when circulating in the plasma. Despite extensive analysis of mechanisms involved in microRNA processing, relatively little is known about the in vitro decay of microRNAs under defined conditions or about the relative stabilities of mRNAs and microRNAs. MicroRNAs (miRNAs) are small, non-coding RNAs which are encoded within the genome. Upon export to the cytoplasm, dicer cleaves the pre-miRNA to mature miRNA, which usually has a length of about 22 ribonucleotides [1,3,4].

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.