Abstract
SummaryGramian matrices with respect to inner products defined for Hilbert spaces supported on bounded and unbounded intervals are represented through a bidiagonal factorization. It is proved that the considered matrices are strictly totally positive Hankel matrices and their catalecticant determinants are also calculated. Using the proposed representation, the numerical resolution of linear algebra problems with these matrices can be achieved to high relative accuracy. Numerical experiments are provided, and they illustrate the excellent results obtained when applying the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.