Abstract
A new class of matrices defined in terms of r-Stirling numbers is introduced. These r-Stirling matrices are totally positive and determine the linear transformation between monomial and r-Bell polynomial bases. An efficient algorithm for the computation to high relative accuracy of the bidiagonal factorization of r-Stirling matrices is provided and used to achieve computations to high relative accuracy for the resolution of relevant algebraic problems with collocation, Wronskian, and Gramian matrices of r-Bell bases. The numerical experimentation confirms the accuracy of the proposed procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.