Abstract
Total luminescence spectroscopy combined with pattern recognition has been used to discriminate between four different types of edible oils, extra virgin olive (EVO), non-virgin olive (NVO), sunflower (SF) and rapeseed (RS) oils. Simplified fuzzy adaptive resonance theory mapping (SFAM), traditional back propagation (BP) and radial basis function (RBF) neural networks provided 100% classification for 120 samples, SFAM was found to be the most efficient. The investigation was extended to the adulteration of percentage v/v SF or RS in EVO at levels from 5% to 90% creating a total of 480 samples. SFAM was found to be more accurate than RBF and BP for classification of adulterant level. All misclassifications for SFAM occurred at the 5% v/v level resulting in a total of 99.375% correctly classified oil samples. The percentage of adulteration may be described by either RBF network (2.435% RMSE) or a simple Euclidean distance relationship of the principal component analysis (PCA) scores (2.977% RMSE) for v/v RS in EVO adulteration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.