Abstract

We prove the existence of the total length process for the genealogical tree of a population model with random size given by a quadratic stationary continuous-state branching processes. We also give, for the one-dimensional marginal, its Laplace transform as well as the fluctuation of the corresponding convergence. This result is to be compared with the one obtained by Pfaffelhuber and Wakolbinger for constant size population associated to the Kingma coalescent. We also give a time reversal property of the number of ancestors process at all time, and give a description of the so-called lineage tree in this model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.