Abstract

The total-ionizing-dose response of few layer MoS2 transistors with ZrO2 or h-BN gate dielectrics is investigated under various bias conditions. Defects in MoS2 and surrounding dielectric layers significantly affect radiation-induced trapping. For devices with ZrO2 dielectrics, much larger negative Vth shifts and peak transconductance degradation are observed for irradiation under negative and ground bias than under positive bias. The h-BN devices exhibit positive threshold voltage shifts under negative-bias irradiation. For both ZrO2 and h-BN passivated devices, the peak transconductance degradation results from charge trapping at the surface of the MoS2 or in nearby oxides. Changes in defect energy distributions of MoS2 FETs during X-ray irradiation are characterized via temperature-dependent low-frequency noise measurements. Density functional theory calculations are performed to provide insight into the pertinent defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.