Abstract

The constant-voltage electrical stress and 10-keV X-ray irradiation responses of encapsulated graphene-hBN devices are evaluated. Both constant-voltage stress and X-ray exposure induce only modest shifts in the current and the Dirac point of the graphene. Charge trapping at or near the graphene/BN interface is observed after X-ray irradiation. The experimental results suggest that net hole trapping occurs in the BN at low doses and that net electron trapping occurs at higher doses. First-principles calculations also demonstrate that hydrogenated substitutional carbon impurities at B/N sites at or near the graphene/BN interface can play an additional role in the radiation response of these structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.