Abstract

The energy radiated in supernova neutrinos is a fundamental quantity that is closely related to the gravitational binding energy of a neutron star. Recently the tidal deformability of neutron stars was constrained by gravitational wave observations. By considering several equations of state, we find a strong correlation between the tidal deformability and neutron star binding energy. We use this correlation to sharpen predictions of the binding energy of neutron stars and the total neutrino energy in supernovae. We find a minimum binding energy for a neutron star formed in a supernova of $\sim1.5\times 10^{53}$ ergs. Should the neutrino energy in a supernova be significantly below this value, it would strongly suggest new unobserved particles are carrying away some of the supernova energy. Alternatively, if the neutrino energy is observed above $\sim 6\times 10^{53}$ ergs, it would strongly imply the formation of a (perhaps surprisingly) massive neutron star.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call