Abstract

In this work, total dose effects on 4H-SiC bipolar junction transistors (BJT) are investigated. Three 4H-SiC NPN BJT chips are irradiated with 3MeV protons with a dose of 1×1011, 1×1012 and 1×1013 cm-2, respectively. From the measured reciprocal current gain it is observed that 4H-SiC NPN BJT exposed to protons suffer both displacement damage and ionization, whereas, a traditional Si BJT suffers mainly from displacement damage. Furthermore, bulk damage introduction rates for SiC BJT were extracted to be 3.3×10-15 cm2, which is an order of magnitude lower compared to reported Si values. Finally, from detailed analysis of the base current at low injection levels, it is possible to distinguish when surface recombination leakage is dominant over bulk recombination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.