Abstract
AbstractA set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. It is known [J Graph Theory 35 (2000), 21–45] that if G is a connected graph of order n > 10 with minimum degree at least 2, then γt(G) ≤ 4n/7 and the (infinite family of) graphs of large order that achieve equality in this bound are characterized. In this article, we improve this upper bound of 4n/7 for 2‐connected graphs, as well as for connected graphs with no induced 6‐cycle. We prove that if G is a 2‐connected graph of order n > 18, then γt(G) ≤ 6n/11. Our proof is an interplay between graph theory and transversals in hypergraphs. We also prove that if G is a connected graph of order n > 18 with minimum degree at least 2 and no induced 6‐cycle, then γt(G) ≤ 6n/11. Both bounds are shown to be sharp. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 55–79, 2009
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.