Abstract

A total dominating set in a graph G is a set of vertices of G such that every vertex is adjacent to a vertex of the set. The total domination number γt(G) is the minimum cardinality of a dominating set in G. Thomassé and Yeo (2007) conjectured that if G is a graph on n vertices with minimum degree at least 5, then γt(G)≤411n. In this paper, it is shown that the Thomassé–Yeo conjecture holds with strict inequality if the minimum degree at least 6. More precisely, it is proven that if G is a graph of order n with δ(G)≥6, then γt(G)≤513814145n<411−12510n. This improves the best known upper bounds to date on the total domination number of a graph with minimum degree at least 6.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.