Abstract

Using the two large cosmological hydrodynamical simulations, Horizon-AGN (H-AGN) and Horizon-noAGN (H-noAGN, no AGN feedback), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the total density profiles (dark matter + stars) at the effective radius of massive early-type galaxies (M*>10^11 Msun). We have studied the dependencies of the mass-weighted density slope gamma'_tot with the effective radius, the galaxy mass and the host halo mass at z~0.3 and found that the inclusion of AGN feedbackalways leads to a much better agreement with observational values and trends. Our analysis suggests also that the inclusion of AGN feedback favours a strong correlation between gamma'_tot and the density slope of the dark matter component while, in the absence of AGN activity, gamma'_tot is rather strongly correlated with the density slope of the stellar component. Finally, we find that gamma'_tot derived from our samples of galaxies increases from z=2 to z=0,in good agreement with the expected observational trend. The derived slopes are slightly lower than in the data when AGN is included because the simulated galaxies tend to be too extended, especially the least massive ones. However, the simulated compact galaxies without AGN feedback have gamma'_tot values that are significantly too high compared to observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.