Abstract
Abstract We present simulations of galaxy formation, based on the GADGET-3 code, in which a sub-resolution model for star formation and stellar feedback is interfaced with a new model for AGN feedback. Our sub-resolution model describes a multiphase ISM, accounting for hot and cold gas within the same resolution element: we exploit this feature to investigate the impact of coupling AGN feedback energy to the different phases of the ISM over cosmic time. Our fiducial model considers that AGN feedback energy coupling is driven by the covering factors of the hot and cold phases. We perform a suite of cosmological hydrodynamical simulations of disc galaxies (Mhalo, DM ≃ 2 · 1012 M⊙, at z = 0), to investigate: (i) the effect of different ways of coupling AGN feedback energy to the multiphase ISM; (ii) the impact of different prescriptions for gas accretion (i.e. only cold gas, both cold and hot gas, with the additional possibility of limiting gas accretion from cold gas with high angular momentum); (iii) how different models of gas accretion and coupling of AGN feedback energy affect the coevolution of supermassive BHs and their host galaxy. We find that at least a share of the AGN feedback energy has to couple with the diffuse gas, in order to avoid an excessive growth of the BH mass. When the BH only accretes cold gas, it experiences a growth that is faster than in the case in which both cold and hot gas are accreted. If the accretion of cold gas with high angular momentum is reduced, the BH mass growth is delayed, the BH mass at z = 0 is reduced by up to an order of magnitude, and the BH is prevented from accreting below z ≲ 2, when the galaxy disc forms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.