Abstract

Atmospheric water vapour plays a key role for the Earth's energy budget and temperature distribution via radiative effects and latent heat transport. Moreover, the distribution and transport of water vapour is closely linked to atmospheric dynamics on all spatiotemporal scales. In this context, monitoring of the water vapour distribution is essential for numerical weather prediction as well as for climate modelling.The Geostationary Environment Monitoring Spectrometer (GEMS) instrument on board the GEO-KOMPSAT-2B satellite offers new opportunities for observing and investigating the regional water vapour distribution over East Asia, especially phenomena such as typhoons or atmospheric rivers, and could thus represent another valuable data source, e.g. for nowcasting systems of natural hazards.In this study, we show the first total column water vapour (TCWV) results retrieved from GEMS UV/vis spectra based on the algorithm of Borger et al. (2020). In addition, we also present an update of the existing algorithm, which, for example, replaces the previous simplified determination of the a priori water vapour profile with a deep neural network. We also compare our results to different reference data sets from ground-based in situ and remote sensing observations, reanalysis models, and satellite measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.