Abstract

A graphite-furnace atomic absorption (GFAAS) method is described for determining total arsenic (organic and inorganic compounds) in foods. Samples ranging from 1 to 40 g (depending on moisture content) were digested with HNO3 and dry-ashed at 500 degrees C overnight after addition of MgO. After dissolution in HCl, the arsenic was reduced with iodide and ascorbic acid and precipitated with ammonium pyrrolidine dithiocarbamate (APDC) in the presence of nickel carrier. Precipitates were collected on 0.3 micron cellulose acetate filters and dissolved in 10% HNO3 containing modifier. Ba(NO3)2 was added to remove a sulfate interference resulting from decomposition of APDC. Arsenic was determined using GFAAS. Accuracy of the method was good for 7 U.S. National Bureau of Standards (NBS) Standard Reference Materials and 3 National Research Council of Canada (NRCC) round-robin samples. Recovery of arsenic(V) from foods averaged 99.2% for peak heights and 97.1% for peak areas, with relative standard deviations (RSD) of 2.2% for peak heights and 3.3% for peak areas for all NBS and NRCC materials. Detection limit of the method was ca 10 ng arsenic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call