Abstract

Solutions to the OECD/NEA three-dimensional fuel assembly benchmark problem, C5G7MOX, obtained using the discrete-ordinates neutron transport code TORT are presented. The accuracy and convergence of the effective multiplication factor and maximum pin power are examined while varying the fidelity of the geometric model and the order of the angular quadrature, specifically the Square Legendre–Chebychev quadrature. The calculated value of the effective multiplication factor is shown to converge asymptotically as the order of the quadrature is increased. The behavior of that asymptotic limit of k eff with decreasing computational cell size and increasing staircase resolution of the curved rod-moderator is less converged. Moreover, rapidly increasing computational cost with geometric configuration refinement prevented us from achieving asymptotic convergence with the spatial approximation. The maximum pin power results are generally shown to asymptotically converge to within the statistical error of the reference solution for the problem slices where control rods are not present. For the zones that contain control rods, the solution does not appear to be tightly converged for the meshes and quadrature orders employed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.