Abstract
The peculiarities of development of neutron-physical model of the VVR-M research nuclear reactor in the SCALE calculation code are considered in the article. Models of separate core elements, which influence neutron-physical characteristics of VVR-M, have been developed. Simulation was performed using the CSAS6 control module. Validation of the VVR-M neutron-physical model, built in the SCALE calculation code, has been carried out by comparing the calculated value of the effective neutron multiplication factor with the critical reactor state at the beginning of seven fuel loads with the number of fuel assemblies in the core from 72 to 129. The model is developmed to determine the effective neutron multiplication factor in the reactor, as well as other neutron-physical characteristics, such as neutron spectrum, neutron flux density in various cells of the reactor. Thus, it is possible to conduct numerical experiments to determine the most optimal locations of research channels in the core of the VVR-M, to conduct physical experiments on the irradiation of the research samples, detectors, structural materials, etc. In the article, the simplifications accepted at construction of neutron-physical model of research nuclear reactor VVR-M in SCALE calculation code are presented. The main elements of the model are described: fuel assemblies, beryllium displacer, control rods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.