Abstract

Cryo-EM, crystallography, biochemical experiments and computational approaches have been used to study different intermediate states of the Aeromonas hydrophila toxin aerolysin en route to pore formation. These results reveal that an unexpected and marked rotation of the core aerolysin machinery is required to unleash the membrane-spanning regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.