Abstract
This article proposes a new duty-ratio regulation-based strategy to improve the torque performance for the direct torque control (DTC) of three-phase permanent magnet synchronous motors (PMSMs). The conventional DTC schemes utilize two hysteresis regulators that are hard to be tuned to satisfy proper torque performance for wide speed ranges because of the contrary change in the positive and the negative torque deviations of the converter's voltage vectors with the rotational speed variations. In contrast, the proposed method uses a duty-ratio regulator that considers the operating speed impact on the torque deviation of the active voltage vectors and avoids triggering those of them that produce high torque deviations, therefore reducing the torque ripple of the DTC system. Moreover, it proposes a virtual reference generator to mitigate the steady-state torque error. The proposed method provides enhanced torque control performance, meanwhile maintaining the main advantages of the conventional DTC techniques, including simple structure, fast transient response, and good robustness. The feasibility and effectiveness of the proposed strategy are verified through a detailed comparative assessment with the conventional DTC scheme and two existing duty regulation-based methods using experimental results obtained from a 0.75-kW PMSM drive system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.