Abstract
Force-feedback mechanisms have been designed to simplify and enhance the human-vehicle interface. The increase in secondary controls within vehicle cockpits has created a desire for a simpler, more efficient human-vehicle interface. By consolidating various controls into a single, haptic feedback control device, information can be transmitted to the operator, without requiring the driver's visual attention. In this work, the experimental closed loop torque control of electro-rheological fluids (ERF) based actuators for haptic application is performed. ERFs are liquids that respond mechanically to electric fields by changing their properties, such as viscosity and shear stress, electroactively. Using the electrically controlled rheological properties of ERFs, we developed actuators for haptic devices that can resist human operator forces in a controlled and tunable fashion. In this study, the ERF actuator analytical model is derived and experimentally verified and accurate closed loop torque control is experimentally achieved using a non-linear proportional integral controller with a feed-forward loop.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have