Abstract

The feasibility of a precessionally driven dynamo is investigated. The relative orientation of the angular-velocity vectors of the mantle and core and the precession vector of the earth are determined from a torque balance. The core and mantle are acted upon by separate gravitational torques and mutual interaction torques resulting from pressure, viscous and magnetic stresses at the core-mantle interface. The viscous and magnetic torques are determined using the results of a detailed analysis of the Ekman-Hartmann and magnetic diffusion layers generated at the core-mantle interface by the misalignment of the mantle and core angular-velocity vectors. The dissipative torques are found to be weaker by a factor of 10 −4 than those estimated by Malkus (1968) and Stacey (1973), resulting in only 3.5 · 10 7 W being extracted from the rotational kinetic energy of the earth by these mechanisms. Furthermore, it is found that all of this energy is dissipated in the boundary layers at the core-mantle interface and none is available to drive the geodynamo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.