Abstract
A striking feature of the solar cycle is that at the beginning, sunspots appear around midlatitudes, and over time the latitudes of emergences migrate toward the equator. The maximum level of activity (e.g., sunspot number) varies from cycle to cycle. For strong cycles, the activity begins early and at higher latitudes with wider sunspot distributions than for weak cycles. The activity and the width of sunspot belts increase rapidly and begin to decline when the belts are still at high latitudes. Surprisingly, it has been reported that in the late stages of the cycle the level of activity (sunspot number) as well as the widths and centers of the butterfly wings all have the same statistical properties independent of how strong the cycle was during its rise and maximum phases. We have modeled these features using a Babcock-Leighton type dynamo model and show that the flux loss through magnetic buoyancy is an essential nonlinearity in the solar dynamo. Our Letter shows that the nonlinearity is effective if the flux emergence becomes efficient at the mean-field strength of the order of 10^{4} G in the lower part of the convection zone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.