Abstract

Large predators have an indispensable role in structuring food webs and maintaining ecological processes for the benefit of biodiversity at lower trophic levels. Such roles are widely evident in marine and terrestrial systems [1, 2]. Large predators can indirectly alleviate predation on smaller (and often threatened) fauna and promote vegetation growth by interacting strongly with sympatric carnivore and herbivore species (e.g. [3-5]). The local extinction of large predators can therefore have detrimental effects on biodiversity [6], and their subsequent restoration has been observed to produce positive biodiversity outcomes in many cases [7]. Perhaps the most well-known example of this is the restoration of gray wolves Canis lupus to the Greater Yellowstone Ecosystem of North America. Since the reintroduction of 66 wolves in 1995 [8], wolf numbers in the area have climbed to ~2000, some large herbivores and mesopredators have substantially declined, and some fauna and flora at lower trophic levels have increased (see [4], and references therein). Similar experiences with some other large predators mean that they are now considered to be of high conservation value in many parts of the world [1, 2, 7], and exploring their roles and functions has arguably been one of the most prominent fields of biodiversity conservation research in the last 10–15 years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call