Abstract

Understanding population regulation of large northern herbivores like cervids has important practical and theoretical implications. Corrective measures for high densities of cervids must be based on theory and thus necessitate analysis of contradicting views of top-down and bottom-up population control. The former considers cervids incapable of self-regulation and hence that they need external factors like predation to achieve effective population regulation. The latter claims that cervids exhibit the capacity to adjust their numbers to the food supply as shown by physiological responses. However, these phenomena are not an expression of evolutionary adaption, they are a predictable physiological reaction to reduced food. In addition, studies were often done in man-modified environments or without considerations of modulating effects through predators. It is unlikely to study pristine relationships between large herbivores and predators in the future through field work, and insights from other fields need to be heeded. Considerations from evolution, thermodynamics, food webs and nutrient cycling indicate that the development of biological systems is unidirectional due to irreversible processes and leads toward optimal order and optimal accumulation of energy and nutrients. Large predators are thus not just a luxury development of evolution, but a necessary sequel to natural laws and they increase efficiency of the system to capture solar energy. It explains why analogous ecomorphs, like saber-tooth “cats” (placental and marsupial) have re-evolved independently at least 5 times. As a group, large predators developed traits allowing self-regulation including territoriality, intra- and interspecific killing, prey-switching, and dispersal. However, in man-modified environments, herbivore densities can reach such high levels that even an intact predator community will no longer exert regulation as there is an upper limit of predator density determined by social mechanisms. As kill success rates are very low, predators also affect herbivores by largely determining spacial distribution and behavioral adaptions, all of which modify herbivore-plant interactions. Cervids on the other hand exhibit traits all indicative of absence of a capacity to self-regulate. Predictable physiological responses to reduced food intake thus operate so late that the typical population response is an irruption with subsequent major dieoff and leads to a reduction in system performance including loss of biodiversity. Therefore, the claim that there exists “natural” regulation in such situations is an erroneous term for what is better called forced starvation. Two conclusions can be drawn:

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call