Abstract

To exploit the advantageous properties of isogeometric analysis (IGA) in a scan-based setting, it is important to extract a smooth geometric domain from the scan data (e.g., voxel data). IGA-suitable domains can be constructed by convoluting the grayscale data using B-splines. A negative side-effect of this convolution technique is, however, that it can induce topological changes in the process of smoothing when features with a size similar to that of the voxels are encountered. This manuscript presents an enhanced B-spline-based segmentation procedure using a refinement strategy based on truncated hierarchical (TH)B-splines. A Fourier analysis is presented to explain the effectiveness of local grayscale function refinement in repairing topological anomalies. A moving-window-based topological anomaly detection algorithm is proposed to identify regions in which the grayscale function refinements must be performed. The criterion to identify topological anomalies is based on the Euler characteristic, giving it the capability to distinguish between topological and shape changes. The proposed topology-preserving THB-spline image segmentation strategy is studied using a range of test cases. These tests pertain to both the segmentation procedure itself, and its application in an immersed IGA setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.