Abstract
Hierarchical B-splines that allow local refinement have become a promising tool for developing adaptive isogeometric methods. Unfortunately, similar to tensor-product B-splines, the computational cost required for assembling the system matrices in isogeometric analysis with hierarchical B-splines is also high, particularly if the spline degree is increased. To address this issue, we propose an efficient matrix assembly approach for bivariate hierarchical B-splines based on the previous work (Pan, Jüttler and Giust, 2020). The new algorithm consists of three stages: approximating the integrals by quasi-interpolation, building three compact look-up tables and assembling the matrices via sum-factorization. A detailed analysis shows that the complexity of our method has the order O(Np3) under a mild assumption about mesh admissibility, where N and p denote the number of degrees of freedom and spline degree respectively. Finally, several experimental results are demonstrated to verify the theoretical results and to show the performance of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.