Abstract
Wireless network is the communication foundation that supports the intelligentization of Unmanned Aerial Vehicle (UAV) swarm. The topology of UAV communication network is the key to understanding and analyzing the behavior of UAV swarm, thus supporting the further prediction of UAV operations. However, the UAV swarm network topology varies over time due to the high mobility and diversified mission requirements of UAVs. Therefore, it is important but challenging to research dynamic topology inference for tracking the topology changes of the UAV network, especially in non-cooperative manner. In this paper, we study the problem of inferring UAV swarm network topology based on external observations, and propose a dynamic topology inference method. First, we establish a sensing framework for acquiring the communication behavior of the target network over time. Then, we expand the multi-dimensional dynamic Hawkes process to model the communication event sequence in a dynamic wireless network. Finally, combining the sliding time window mechanism, the maximum weighted likelihood estimation is applied to inferring the network topology. Extensive simulation results demonstrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.