Abstract
Cleavage of transmembrane segments on target proteins by the aspartyl intramembrane protease signal peptide peptidase (SPP) has been linked to immunity, viral infection and protein quality control. How SPP recognizes its various substrates and specifies their fate remains elusive. Here we identified the lanosterol demethylase CYP51A1 as an SPP substrate and show that SPP-catalyzed cleavage triggers CYP51A1 clearance by ER-associated degradation (ERAD). We observe that SPP targets only a fraction of CYP51A1 molecules and identified an amphipathic helix in the N-terminus as a key determinant for SPP recognition. SPP recognition is remarkably specific to CYP51A1 molecules with the amphipathic helix aberrantly inserted in the membrane with a type II orientation. Thus, our data are consistent with a role for SPP in topology surveillance, triggering the clearance of certain, potentially non-functional conformers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.