Abstract
In this paper, a robust topology optimization method presents that insensitive to the uncertainty in geometry. Geometric uncertainty can be introduced in the manufacturing variability. This uncertainty can be modeled as a random field. A memory-less transformation of random fields used to random variation modeling. The Adaptive Sparse Grid Collocation (ASGC) method combined with the geometry uncertainty models provides robust designs by utilizing already developed deterministic solvers. The proposed algorithm provides a computationally cheap alternative to previously introduced stochastic optimization methods based on Monte Carlo sampling by using the adaptive sparse grid method. The method is demonstrated in the design of a minimum compliance Messerschmitt-Bölkow-Blohm (MBB) and cantilever beam as benchmark problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.