Abstract

Structures containing tension-only members, i.e., cables, are widely used in engineered structures (e.g., suspension and cable-stayed bridges, tents, and bicycle wheels) and are also found in nature (e.g., spider webs). We seek to use the ground structure method to obtain optimal cable network configurations. The structures are modeled using principles of nonlinear elasticity that allow for large displacements, i.e., global configuration changes, and large deformations. The material is characterized by a hyperelastic constitutive relation in which the strain energy is nonzero only when the axial stretch of a member is greater than or equal to one (i.e., tension-only behavior). We maximize the stationary potential energy of the equilibrated system, which avoids the need for an additional adjoint equation in computing the derivatives needed for the solution of the optimization problem. Several examples demonstrate the capabilities of the proposed formulation for topology optimization of cable networks. Motivated by nature, a spider web–inspired cable net is designed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.