Abstract
A new topology optimization using adaptive inner-front level set method is presented. In the conventional level set-based topology optimization, the optimum topology strongly depends on the initial level set due to the incapability of inner-front creation during the optimization process. In the present work, in this regard, an algorithm for inner-front creation is proposed in which the sizes, the positions, and the number of new inner-fronts during the optimization process can be globally and consistently identified. In the algorithm, the criterion of inner-front creation for compliance minimization problems of linear elastic structures is chosen as the strain energy density along with volumetric constraint. To facilitate the inner-front creation process, the inner-front creation map is constructed and used to define new level set function. In the implementation of inner-front creation algorithm, to suppress the numerical oscillation of solutions due to the sharp edges in the level set function, domain regularization is carried out by solving the edge smoothing partial differential equation (smoothing PDE). To update the level set function during the optimization process, the least-squares finite element method (LSFEM) is adopted. Through the LSFEM, a symmetric positive definite system matrix is constructed, and non-diffused and non-oscillatory solution for the hyperbolic PDE such as level set equation can be obtained. As applications, three-dimensional topology optimization of shell structures is treated. From the numerical examples, it is shown that the present method brings in much needed flexibility in topologies during the level set-based topology optimization process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have