Abstract

Topology optimization of proportionally damped structures subjected to harmonic excitations within a frequency interval is a challenging task. In this work, we consider the structural velocity and acceleration responses in a frequency interval as the optimization objectives. The optimized structures will be significantly different from those with the displacement response only due to the influence of excitation frequencies. In particular, if the acceleration amplitude of structural frequency responses in a frequency interval is considered, the optimization process usually converges to a configuration that is unable to ensure engineering feasibility. An optimization model that takes the structural static response of the structure as a weighted part of the objective function is proposed, it can make the optimized configuration more applicable for engineering design. An efficient method for calculating frequency responses over a frequency interval is also introduced. The derivatives of the objective function are derived by the adjoint method and can be calculated in a manner similar to the frequency response. Two illustrative examples are given to examine the accuracy and validity of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.