Abstract
The Dirac-like cones underlie many unique properties of photonic crystals (PhCs). This paper aims to design fabrication-friendly PhCs with Dirac-like cones for transverse magnetic (TM) modes and transverse electric (TE) modes at different specific frequencies. By maximizing the minimum of a collection of the local density of states corresponding to different judiciously selected sources, this paper demonstrates that Dirac-like cones formed by the degeneracy of a doubly degenerate mode and a single mode at different desired frequencies are successfully obtained. The exotic wave manipulation properties associated with Dirac-like cones, such as cloaking, wavefront shaping and tunneling through bent channels, are exhibited based on the optimized structures. This paper also demonstrates that the proposed method could be used for the design of PhCs with one Dirac-like cone at ω, and one monopolar band at 2ω at the Γ point, and PhCs with third order Dirac-like cones, which have potential applications in nonlinear optics. All topological patterns of the optimized PhCs are reported and have regular and smooth features, meaning they can be readily fabricated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.