Abstract
One of the issues for the automotive industry is weight reduction. For this purpose, topology optimization is used for mechanical parts and usually involves a single part. Its connections to other parts are assumed to be fixed. This paper deals with a coupled topology optimization of both the structure of a part and its connections (location and number) to other parts. The present work focuses on two models of connections, namely rigid support and spring that prepares work for bolt connection. Rigid supports are modeled by Dirichlet boundary conditions while bolt-like connections are idealized and simplified as a non-local interaction to be representative enough at a low computational cost. On the other hand, the structure is modeled by the linearized elasticity system and its topology is represented by a level set function. A coupled optimization of the structure and the location of rigid supports is performed to minimize the volume of an engine accessories bracket under a compliance constraint. This coupled topology optimization (shape and connections) provides more satisfactory performance of a part than the one given by classical shape optimization alone. The approach presented in this work is therefore one step closer to the optimization of assembled mechanical systems. Thereafter, the concept of topological derivative is adapted to create an idealized bolt. The main idea is to add a small idealized bolt at the best location and to test the optimality of the solution with this new connection. The topological derivative is tested with a 3d academic test case for a problem of compliance minimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.