Abstract
The framework of topological sensitivity analysis in singularly perturbed geometrical domains, presented in the first part of this series of review papers, allows the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, cavities, inclusions, source terms and cracks. This new concept in shape sensitivity analysis generalizes the shape derivatives from the domain boundary to its interior for admissible domains in two and three spatial dimensions. Therefore, the concept of topological derivative is a powerful tool for solving shape–topology optimization problems. There are now applications of topological derivative in many different fields of engineering and physics, such as shape and topology optimization in structural mechanics, inverse problems for partial differential equations, image processing, multiscale material design and mechanical modeling including damage and fracture evolution phenomena. In this second part of the review, a topology optimization algorithm based on first-order topological derivatives is presented. The appropriate level-set domain representation method is employed within the iterations in order to design an optimal shape–topology local solution. The algorithm is successfully used for numerical solution of a wide class of shape–topology optimization problems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have