Abstract
Currently, many different topologies are designed with different transmission technologies such as automated manual transmission (AMT) and continuously variable transmission (CVT). The choice of topology determines the energy-flow efficiency between the hybrid system, the engine, and the vehicle wheels. The optimal topology minimizing fuel consumption is influenced by the transmission technology. Therefore, an AMT (high efficiency) and a push-belt CVT (moderate efficiency), are used in this research for comparison. In addition, a controlled switching topology is introduced as a benchmark, where controlled coupling with additional clutches of the electric machine before or after the transmission minimizing transmission losses and improving hybrid performance is investigated. The results showed that a switching topology can significantly improve CO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> emission reduction (average relative improvements between 2% and 7%), particularly for CVT-based hybrid vehicles. Moreover, in case of an AMT, a precoupled topology is preferable, and in the case of a CVT, a postcoupled is preferable for full-hybrid vehicles. For these cases, selecting the optimal fixed topology can improve the relative CO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> emission reduction between 2% and 8%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.