Abstract

As key components of the optical system of the space optical remote sensor, Space mirrors’ surface accuracy had a direct impact that couldn’t be ignored of the imaging quality of the remote sensor. In the future, large-diameter mirror would become an important trend in the development of space optical technology. However, a sharp increase in the mirror diameter would cause the deformation of the mirror and increase the thermal deformation caused by temperature variations. A reasonable lightweight structure designed to ensure the optical performance of the system to meet the requirements was required. As a new type of lightweight approach, topology optimization technology was an important direction of the current space optical remote sensing technology research. The lightweight design of rectangular mirror was studied. the variable density method of topology optimization was used. The mirror type precision of the mirror assemblies was obtained in different conditions. PV value was less than λ/10 and RMS value was less than λ/50(λ = 632.8nm). The results show that the entire The mirror assemblies can achieve a sufficiently high static rigidity, dynamic stiffness and thermal stability and has the capability of sufficient resistance to external environmental interference . Key words: topology optimization, space mirror, lightweight, space optical remote sensor

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.