Abstract
This article provides a comprehensive review of structural optimization employing topology methods for structures under vibration problems. Topology optimization allows creative and radical design modifications, compared to shape and size optimization techniques. Various works of structural topology optimization, which are subjected to vibration as the response function of the optimization process, are reviewed. Different types of calculus and numerical methods commonly used for solving structural topological optimization problems are briefly discussed. Moreover, different aspects of topology optimization related to vibration problems are explained. The articles reviewed are largely confined to linear systems that concern small vibration amplitudes. Accordingly, the works related to vibration topological optimization are classified according to the method employed (homogenization, evolutionary structural optimization, solid isotropic material with penalization, or level set). The reviewed works are tabulated according to their methodology, year, and the objective functions and applications of each work. Although the homogenization and evolutionary methods were common in the past, the solid isotropic material with penalization (SIMP) method is the most popular method applied in recent years. The advantages of the level set method show promise for future applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.